

Über die Kristallstrukturen der Monofluoroselenite $MSeO_2F$ (M = K, Rb, Cs)

Claus Feldmann und Martin Jansen*

Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany

Eingegangen am 5. Juli 1994

Key Words: Alkali metal monofluoroselenites / Selenium compounds

On the Crystal Structures of the Monofluoroselenites MSeO₂F (M = K, Rb, Cs)

The alkali metal monofluoroselenites $MSeO_2F$ (M = K, Rb, Cs) have been prepared as single crystals. $KSeO_2F$ crystallizes in the space group $P2_1/m$ and contains distorted trigonal-pyramidal SeO_2F^- anions, the geometry of which has been determined for the first time. These complex anions are bridged by long-range Se-F interactions to linear chains. $RbSeO_2F$ and $CsSeO_2F$ crystallize in the space group $Pm\overline{3}m$.

Salze der fluoroselenigen Säure sind bereits länger bekannt, ihr struktureller Aufbau blieb bislang jedoch weitgehend ungeklärt. Von Interesse ist hierbei zum einen der stereochemische Einfluß des freien Elektronenpaares am Selen wie auch die Frage nach der Verbrückung der Anionen über Sauerstoff und/oder Fluor. Monofluoroselenite MSeO₂F wie auch Difluoroselenite M₂SeO₂F₂ lassen sich sowohl durch Umsetzung von Alkalimetallfluoriden mit Selendioxid in einer Festkörperreaktion als auch aus einer Lösung in 48proz. Flußsäure darstellen^[1].

Vergleicht man die entsprechenden Salze des vierwertigen Schwefels, Selens und Tellurs, so nimmt die Neigung zur Erhöhung der Koordination durch Bildung der Difluorochalkogenite oder Verbrückung der Anionen bei den schwereren Chalkogenen erwartungsgemäß zu. Demzufolge findet man bei Schwefel nur Verbindungen MSO₂F mit isolierten Anionen^[2]. Im Falle von Tellur hingegen ist die Bildung der Difluorotellurite M₂TeO₂F₂ begünstigt. Die Monofluorotellurite dagegen zerfallen leicht in die Difluorotellurite und TeO₂. Weiterhin beobachtet man häufig eine Verbrükkung der komplexen Anionen^[3].

Entsprechend seiner Stellung zwischen Schwefel und Tellur findet man bei Selen deutlich stabilere Monofluoroselenite MSeO₂F. Lediglich K₂SeO₂F₂ konnte, wenn auch nur verunreinigt mit KSeO₂F, als Diaddukt identifiziert werden^[1]. Nach schwingungsspektroskopischen Untersuchungen von Paetzold und Aurich sind in den Monofluoroseleniten MSeO₂F (M = K, Cs) die Anionen über Fluor zu polymeren Anionen (FSeO₂)^{*n*-}_{*n*} mit einer verzerrt pyramidalen Umgebung um Selen verknüpft^[2,4]. Sie schlossen dies aus der unerwartet tief liegenden Frequenz der Se-F-Valenzschwingung. Milne hingegen schließt polymere Anionen aus, da die Lage der Schwingungsbanden nur wenig von der Art des Kations abhängt und weiterhin die IR-Spektren von N(C₂H₅)₄SeO₂F als Festkörper und in Lösung sich In contrast to KSeO₂F, the trigonal-pyramidal SeO₂F⁻ anions in these latter two fluoroselenites are disordered. A phase transition between the ordered and disordered modification has been established in the case of KSeO₂F. Vibrational spectra have been recorded and are correlated to the results of the crystal structure determination.

nicht unterscheiden^[3b]. Dies führt zur Formulierung einer sehr schwachen und damit verlängerten Se-F-Bindung. Diskutiert wurde ebenso eine im wesentlichen ionische Se-F-Bindung^[1,5].

Wir haben die Monofluoroselenite $MSeO_2F$ (M = K, Rb, Cs) erneut untersucht und deren Schwingungsspektren mit ihren mittels Einkristallstrukturanalyse bestimmten Struktureigenschaften in Zusammenhang gestellt.

Ergebnisse und Diskussion

Eigenschaften

Die Alkalimetallmonofluoroselenite fallen bei ihrer Darstellung als kristalline weiße Feststoffe an. Bei längerem Tempern (3-4 Wochen) bilden sich große klare Kristalle. Die Verbindungen sind hygroskopisch und müssen unter Schutzgas gehandhabt werden. An der Luft zerfließen sie in wenigen Minuten.

Durch Differenzthermoanalyse ergaben sich folgende Schmelzpunkte: 266°C (KSeO₂F), 366°C (RbSeO₂F), 405°C (CsSeO₂F). Oberhalb von 450°C tritt in allen Fällen Zersetzung der Schmelze unter Sublimation von SeO₂ ein.

Beschreibung der Kristallstrukturen

KSeO₂F

Nach einer Röntgenbeugungsanalyse an Pulvern, deren Ergebnisse durch eine Einkristallstrukturanalyse abgesichert wurden (Tab. 1 und 2), kristallisiert KSeO₂F in der monoklinen Raumgruppe $P2_1/m$. Dabei finden sich verzerrt trigonal-pyramidale oder unter Berücksichtigung des freien Elektronenpaares am Selen als zusätzlichem Liganden verzerrt pseudo-tetraedrische SeO₂F⁻-Anionen.

Der Se-O-Abstand ist mit 1.638(6) Å gegenüber demjenigen in festem Selendioxid (1.73 und 1.78 Å)^[6] deutlich verkürzt (Abb. 1). Er entspricht dagegen eher dem Se-O-Abstand des gasförmigen SeO₂ (1.61 Å)^[7] und weist auf

Chem. Ber. 1994, 127, 2173–2176 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/1111–2173 \$ 10.00+.25/0

Tab. 1. Angaben zu den Kristallstrukturbestimmungen

	KSeO ₂ F	RbSeO ₂ F	CsSeO ₂ F
Molmasse [g mol ⁻¹]	169.1	215.4	262.9
Kristallsystem	monoklin	kubisch	kubisch
Zellkonstanten			
a [Å]	4.531(2)	4.520(1)	4.663(1)
b	5.955(1)	4.520(1)	4.663(1)
	7.169(1)	4.520(1)	4.663(1)
αĵ°j	90	90 ``	90 `´
βį°į	107.56(2)	90	90
γ ľ°l	90	90	90
V Å ³	184.4(1)	92.3(1)	101.4(1)
Raumgruppe	$P2_1/m$	Pm3m	Pm3m (
Z	2	1	1
röntgenograph. Dichte			
$[g cm^{-3}]$	3.045	3.875	4.304
Absorptionskoeffi-			
zient (mm^{-1})	11.146	23.099	17.952
Strukturamplitude			
F(000)	156	96	114
Meßbereich Θ [°]	3.0 - 30.0	4.5-39.0	4.4-39.6
hkl-Bereich			
h	-7 - 7	0 - 8	-8-8
k	-9-9	-8-8	-8 - 8
1	-11-11	-8 - 8	-8 - 8
gemessene Reflexe	1359	884	2670
symmetrieunabhängig	590	79	91
freie Parameter	29	7	7
R _(intern)	0.020	0.036	0.033
$R_1 (I \ge 3\sigma I)$	0.055	0.056	0.026
$wR_2 (I > 3\sigma I)$	0.142	0.105	0.081
Max. Restelektronen-			
dichte [e/Å ³]	2.728	0.930	2.015

Tab. 2. Besetzungsfaktoren (SOF), Atomkoordinaten (* 10⁴) und äquivalente isotrope Temperaturfaktoren $[Å^2 \cdot 10^3]$ für KSeO₂F

Atom	SOF	<i>x/a</i>	y/b	z/c	U _(eq)
K	0.5	1664(5)	2500	3199(3)	29(1)
Se	0.5	4218(2)	2500	8470(1)	25(1)
O	1	3427(15)	315(10)	7015(10)	41(1)
F	0.5	8321(17)	2500	9062(13)	66(3)

den ausgeprägten Doppelbindungscharakter der Se-O-Bindung hin. Der Se-F-Abstand ist mit 1.778(8) Å gegenüber demjenigen der axialen Se-F-Bindung in Selentetrafluorid (1.77 Å)^[8] nur wenig verlängert. Trotz gleicher Bindungsabstände findet man jedoch die Se-F-Valenzschwingung in KSeO₂F mit 440 cm⁻¹ bei deutlich niedrigerer Frequenz als die Valenzschwingungen der axialen Fluoratome in SeF₄ (v_{as}{F_{ax}-Se-F_{ax} = 585 cm⁻¹}, v_s{F_{ax}-Se-F_{ax} = 551 cm⁻¹}^[9]).

Ein weiteres Fluoratom befindet sich mit einem Abstand von 2.829(8) Å noch deutlich unterhalb des Abstandes der Van-der-Waals-Radien (3.40 Å)^[10]. Somit resultiert eine wenn auch nur schwache Verbrückung der Anionen über jeweils ein Fluor-Atom. Dies führt zu einer Anordnung der SeO₂F-Anionen in Form einer linearen Kette entlang der kristallographischen *a*-Achse (Abb. 2).

Die O-Se-O- und F-Se-O-Bindungswinkel sind mit 105.0(5) und $99.4(3)^{\circ}$ aufgrund des größeren Raumbedarfs des freien Elektronenpaares wie erwartet gegenüber dem Tetraederwinkel deutlich verringert (Abb. 1). Sie sind eben-

Abb. 1. Geometrie des SeO_2F^- -Anions. Bindungswinkel: O-Se-O 105.2(5), O-Se-F1 99.4(3), O-Se-F2 93.5(2), F1-Se-F2 158.6(5)°

Abb. 2. Elementarzelle von $KSeO_2F$ und verbrückten SeO_2F^- -Anionen entlang der kristallographischen *a*-Achse

falls deutlich verringert gegenüber den Bindungswinkeln wie man sie im isoelektronischen ClO_2F (O- $Cl-O = 115.2^\circ$; O- $Cl-F = 101.7^\circ$)^[11] oder BrO_2F (O- $Br-O = 115.0^\circ$; O- $Br-F = 102.0^\circ$)^[12] findet. Dies ist auf die schwache Verbrückung über ein weiteres Fluor-Atom zurückzuführen, wodurch das Anion in Richtung auf eine pseudo-trigonale Bipyramide verzerrt wird.

Faßt man die komplexen Anionen als eine Einheit auf, so entspricht die Struktur formal dem CsCl-Typ, wobei Kalium von 8 SeO₂F⁻-Anionen und SeO₂F⁻- von 8 Kalium-Atomen umgeben ist (Abb. 3). Durch die niedere Symmetrie des Anions erfährt die Struktur eine monokline Verzerrung. Hieraus läßt sich auch die schon von Paetzold postulierte Strukturanalogie von KSeO₂F und KBrO₃ verstehen, dessen Struktur ebenfalls als Variante des CsCl-Typs aufgefaßt werden kann^[2,13]. Dabei geht eine Erniedrigung der Punktsymmetrie des Anions (Cl⁻: K_h , BrO₃⁻: $C_{3\nu}$, SeO₂F⁻: C_s) mit einer Erniedrigung der Raumgruppensymmetrie nach den Gruppe-Untergruppe-Beziehungen einher (CsCl: $Pm\bar{3}m$, KBrO₃: $R\bar{3}m$, KSeO₂F: $P2_1/m$)^[14].

Chem. Ber. 1994, 127, 2173-2176

Abb. 3. KSeO₂F als verzerrte Variante des CsCl-Typs

RbSeO₂F und CsSeO₂F

Gemäß den Ergebnissen einer Einkristallstrukturanalyse kristallisieren RbSeO₂F und CsSeO₂F kubisch in der Raumgruppe $Pm\bar{3}m$ (Tab. 1). Dabei besetzt das Alkalimetall entsprechend dem CsCl-Typ die Würfelecken, Selen befindet sich in dessen Zentrum (Tab. 3, 4). Sauerstoff und Fluor sind in der Strukturverfeinerung nicht unterscheidbar und können auf einer sechszähligen Lage mit oktaedrischer Symmetrie um Selen lokalisiert werden (Abb. 4), wobei die Lagen jeweils nur halbbesetzt sind.

Tab. 3. Besetzungsfaktoren (SOF), Atomkoordinaten (* 10⁴) und äquivalente isotrope Temperaturfaktoren [Å² \cdot 10³] für RbSeO₂F

Atom	SOF	x/a	y/b	z/c	$U_{(eq)}$
Rb	0.0208	0	0	0	39(1)
Se	0.0208	5000	5000	5000	45(1)
0	0.0417	5000	1089(38)	5000	64(6)
F	0.0208	5000	1089(38)	5000	64(6)

Tab. 4. Besetzungsfaktoren (SOF), Atomkoordinaten (* 10⁴) und äquivalente isotrope Temperaturfaktoren [Å² \cdot 10³] für CsSeO₂F

Atom	SOF	x/a	y/b	z/c	U _(eq)	
Cs	0.0208	0	0	0	30(1)	
Se	0.0208	5000	5000	5000	38(1)	
0	0.0417	5000	1136(15)	5000	41(1)	
F	0.0208	5000	1136(15)	5000	41(1)	

Die direkten Se–O/F-Abstände sind mit 1.782(2) (RbSeO₂F) und 1.801(7) Å (CsSeO₂F) gegenüber der Se–O- und Se–F-Bindung in KSeO₂F etwas verlängert. Zudem findet man eine weitere O/F-Lage bei 2.737(2) (RbSeO₂F) und 2.873(8) Å (CsSeO₂F), deren Abstand wiederum noch deutlich unter der Summe der Se–F- und Se–O-Van-der-Waals-Radien liegt (Se–O = 3.40, Se–F = 3.40–3.50 Å^[10]). Die Bindungen zu den zweitnächsten O/ F-Nachbarn sind somit gegenüber KSeO₂F verkürzt. Beide Abstandsänderungen sind insgesamt Ausdruck einer stärkeren intermolekularen Verbrückung der Anionen in RbSeO₂F und CsSeO₂F.

Chem. Ber. 1994, 127, 2173-2176

Abb. 4. Elementarzelle von RbSeO₂F und CsSeO₂F mit fehlgeordneten SeO₂F⁻-Anionen und übernächsten O/F-Nachbarn

Die Punktsymmetrie C_s des SeO₂F⁻-Anions ist jedoch nicht vereinbar mit seiner Oh-Lagesymmetrie im Festkörper. IR- und Raman-Spektren (Tab. 5) belegen hingegen auch für RbSeO₂F und CsSeO₂F eindeutig die C_s-Symmetrie des Anions. Die Bandenlagen, insbesondere der Se-F-Valenzschwingung, ändern sich in den Monofluoroseleniten $MSeO_2F$ (M = K, Rb, Cs) nur wenig. Die auftretenden Verschiebungen sind auf die mit dem Radius des Alkalimetall-Ions sich ändernden elektrostatischen Kräfte zwischen Anionen und Kationen^[15] sowie die stärkere Verbrükkung der Anionen zurückzuführen. Somit ist von einer Fehlordnung der komplexen Anionen auszugehen. Dabei bleibt die Geometrie des Anions erhalten, jedoch kann nur noch Selen als dessen Schwerpunkt durch Röntgenbeugung lokalisiert werden. Sauerstoff und Fluor können nur noch in Form ihrer größten Aufenthaltswahrscheinlichkeit im Zeitmittel angegeben werden.

Tab. 5. Schwingungsspektren von Monofluoroseleniten $MSeO_2F$, Wellenzahlen in cm⁻¹ (Intensitätsangaben: s = strong, m = medium, w = weak, sh = shoulder)

	KSeO ₂ F		RbSeO ₂ F		CsSeO ₂ F	
	IR	Raman	IR	Raman	IR	Raman
$v_1(A') v_s(SeO_2)$	906 s	905 s	892 s	880 s	888 s	880 s
$v_5(A'') v_{as}(SeO_2)$	881 s	880 sh	861 s	865 s	862 s	855 sh
$v_2(A') v(SeF)$	438 s	442 sh	442 s	440 m	436 s	430 m
$v_4(A') \delta(SeO_2)$	414 s	410 m	407 s	405 m	405 s	395 m
$v_3(A') \delta_8(OSeF)$	325 m	320 m	321 m	320 m	317 m	310 m
$v_6(A'') \delta_{as}(OSeF)$	284 m	285 m	285 m	285 m	282 m	275 m

Ob die Fehlordnung statischer oder dynamischer Natur ist, kann durch Untersuchung der Temperatureigenschaften der Verbindungen geklärt werden. Guinier-Simon-Aufnahmen von RbSeO₂F und CsSeO₂F zeigen im untersuchten Temperaturbereich von 0 bis -150°C keine Phasenumwandlung. Berücksichtigt man weiterhin die sich aus dem Vergleich der Bindungslängen ergebende stärkere Verbrükkung der Anionen, deutet dies auf eine statische Fehlordnung hin. Im Falle von KSeO₂F konnte sowohl durch Differenzthermoanalyse als auch durch Guinier-Simon-Aufnahmen eine Phasenumwandlung zwischen 205 und 220°C festgestellt werden. Die Indizierung der Guinier-Simon Aufnahmen ergab einen Übergang vom monoklinen Kristallsystem in ein tetragonales [a = 4.129(2), c = 4.774(3)]Å], wobei das Zellvolumen mit 81.39(5) Å³ dem halben monoklinen Zellvolumen entspricht. Aufgrund der kleineren Elementarzelle von KSeO₂F gegenüber RbSeO₂F und CsSeO₂F ist die Fehlordnung der komplexen Anionen hier anscheinend nicht völlig regellos möglich.

Zusammenfassung

Die Einkristallstrukturanalysen und Schwingungsspektren der Monofluoroselenite $MSeO_2F$ (M = K, Rb, Cs) belegen das Vorliegen trigonal-pyramidaler SeO₂F⁻-Anionen. Darüber hinaus besteht eine schwache Verknüpfung der Anionen über nicht-symmetrische F-Brücken, deren Stärke in den Verbindungen mit den schwereren Alkalimetallen zunimmt. Dies führt zu verringerten Bindungswinkeln in SeO_2F^- im Vergleich zu dem isoelektronischen ClO₂F oder BrO₂F.

Aus der Verbrückung resultiert im Falle von KSeO₂F eine Anordnung der SeO₂F⁻-Anionen in Form einer linearen Kette. In der größeren Elementarzelle von RbSeO₂F und CsSeO₂F sind die Anionen hingegen fehlgeordnet, Sauerstoff und Fluor können nicht mehr unterschieden werden. Eine entsprechende Phasenumwandlung der geordneten zu einer partiell fehlgeordneten Modifikation konnte im Falle von KSeO₂F zwischen 205 und 220°C beobachtet werden. Bei RbSeO₂F und CsSeO₂F tritt bis -150°C keine Phasenumwandlung auf, was zusammen mit der stärkeren Verbrückung der Anionen auf statische Fehlordnung schlie-Ben läßt.

Experimenteller Teil

Ausgangsverbindungen: Alkalimetallfluoride MF (M = K, Rb, Cs) (99.9%, Fa. Aldrich, Steinheim) wurden vor der Verwendung 12 h bei 200°C i. Vak. getrocknet. Selendioxid (sublimiert, Fa. Merck, Darmstadt) wurde 12 h bei 120°C i. Vak. getrocknet.

Darstellung von Alkalimetallmonofluoroseleniten: Äquimolare Mengen an Selendioxid und dem entsprechenden Alkalimetallfluorid wurden unter Argon innig verrieben und in einen Silbertiegel mit Deckel gefüllt. Dieser wurde wiederum unter Argon in eine Duranglasampulle eingeschmolzen und 4 d in einem Röhrenofen erhitzt, wobei folgende Temperaturen eingestellt wurden: KSeO₂F, 250°C; RbSeO₂F, 300°C; CsSeO₂F, 400°C. Zur Züchtung geeigneter Einkristalle ist es vorteilhaft, das Alkalimetallfluorid mit 2% Überschuß einzusetzen und die Reaktionszeit auf 28 d zu verlängern. Die Aufarbeitung der Proben muß aufgrund der Empfindlichkeit gegen Hydrolyse ebenfalls unter Inertgas erfolgen.

Differenzthermoanalyse: Die thermischen Analysen erfolgten mit einem DTA-Gerät STA 429 (Fa. Netzsch, Selb) unter Argon.

Schwingungsspektroskopische Untersuchungen: FT-IR-Spektren wurden mit einem Vakuumspektrometer IFs113v (Fa. Bruker,

Karlsruhe) aufgenommen (SiC-Globar als Strahlungsquelle, MCT-Detektor, Auflösung 2 cm⁻¹, Probe als KBr-Preßling). Raman-Spektren wurden mit einem Spektrometer (Fa. Coderg, Cluny, Frankreich) mit Dreifachmonochromator und zwei Photomultiplier-Systemen als Detektor aufgenommen (Auflösung 8 cm⁻¹). Zur Anregung diente ein Argon-Laser (19436.35 cm⁻¹, 2 W) (Fa. Spectra Physics, San Jose, USA). Die Probe befand sich in einer Glaskapillare ($\emptyset = 1 \text{ mm}$).

Röntgenstrukturanalysen: Die Bestimmung der Gitterkonstanten und Messung der Reflexintensitäten erfolgten auf einem Enraf-Nonius-CAD4-Diffraktometer mit Graphit-monochromatisierter Mo- $K_{\rm a}$ -Strahlung ($\lambda = 0.71069$ Å). Zur Messung wurden Kristalle mit einer Größe von $0.20 \times 0.20 \times 0.15 \text{ mm}^3$ verwendet. Die Struktur wurde mit direkten Methoden (SHELXS-86^[16]) gelöst und nach der Methode der kleinsten Fehlerquadrate (SHELXL-92^[17]) verfeinert. Im Falle von RbSeO₂F und CsSeO₂F wurde eine numerische Absorptionskorrektur durchgeführt (HABITUS^[18]). Die Abbildungen wurden mit dem Programm KPLOT^[19] erarbeitet und mit dem Programm ORTEP^[20] ausgeführt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58621, der Autorennamen und des Zeitschriftenzitats angefordert werden.

- ^[1] R. J. Gillespie, P. Spekkens, J. B. Milne, D. Moffett, J. Fluor. K. J. Omespix, A. Z. Chem. 1976, 7, 43. R. Paetzold, K. Aurich, Z. Chem. 1964, 4, 321. ^[3a] J. B. Milne, D. Moffett, *Inorg. Chem.* 1973, 12, 2240. –
- [2]
- [3]
- ^[4] R. Paetzold, K. Aurich, Z. Chem. 1966, 6, 265. [5]
- E. J. Baran, J. Fluorine Chem. 1977, 10, 255.
- [6] J. D. McCullough, J. Am. Chem. Soc. 1937, 59, 789.
 [7] K. J. Palmer, N. Elliott, J. Am. Chem. Soc. 1938, 60, 1309
- [8] R. J. Gillespie, E. A. Robinson, *Inorg. Chem.* 1992, 31, 1960.
 [9] ^[9a] K. Seppelt, Z. Anorg. Allg. Chem. 1975, 416, 12, ^[9b] C. J.
- Adams, A. J. Downs, Spectrochim. Acta, Part A 1972, 28, 1841.
- ^[10] J. E. Huheey, Anorganische Chemie, 1. Aufl., de Gruyter, Berlin, 1988, S. 278
- [11] K. O. Christe, C. J. Schack, Adv. Inorg. Chem. Radio. 1976, 18, 319
- ^[12] R. J. Gillespie, P. Spekkens, J. Chem. Soc., Chem. Commun. 1975. 314
- [13] [13a] W. H. Zachariasen, Skr. Akad. Oslo 1928, 4, 92. [13b] J.
 H. Smith, Nature 1925, 115, 335.
- [14] International Tables for X-ray Crystallography, Vol. 1, Kynoch Press, Birmingham, 1972.
- ^[15] [^{15a]} Th. Bremm, M. Jansen, Z. Anorg. Allg. Chem. **1992**, 608, 49. [^{15b]} M. H. Brooker, D. E. Irish, Can. J. Chem. **1971**, 49, 1289. - [15c] M. H. Brooker, M. A. Bredig, J. Chem. Phys. 1973, 58. 5319.
- ^[16] G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Determination, Universität Göttingen, 1986.
- [17] G. M. Sheldrick, SHELXL-92, Program for Crystal Structure Refinement, Universität Göttingen, 1992.
- ^[18] W. Herrendorf, HABITUS, Programm zur Optimierung der Kristallbeschreibung für die numerische Absorptionskorrektur an-hand geeigneter, PSI-abgetasteter Reflexe, Universität Karlsruhe, 1993.
- ^[19] R. Hundt, KPLOT, Programm zum Zeichnen und zur Untersuchung von Kristallstrukturen, Universität Bonn, 1993
- ^[20] C. K. Johnson, ORTEP, Programm zur zeichnerischen Darstellung von Kristallstrukturen, bearbeitet von R. Hundt, Universität Bonn, 1993.

[254/94]